资源类型

期刊论文 2

年份

2023 1

2022 1

关键词

检索范围:

排序: 展示方式:

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1986-2000 doi: 10.1007/s11705-023-2337-5

摘要: Breakage of the C–N bond is a structure sensitive process, and the catalyst size significantly affects its activity. On the active metal nanoparticle scale, the role of catalyst size in C–N bond cleavage has not been clearly elucidated. So, Ru catalysts with variable nanoparticle sizes were obtained by modulating the reduction temperature, and the catalytic activity was evaluated using 1,2,3,4-tetrahydroquinoline and o-propylaniline with different C–N bond hybridization patterns as reactants. Results showed a 13 times higher reaction rate for sp3-hybridized C–N bond cleavage than sp2-hybridized C–N bond cleavage, while the reaction rate tended to increase first and then decrease as the catalyst nanoparticle size increased. Different concentrations of terrace, step, and corner sites were found in different sizes of Ru nanoparticles. The relationship between catalytic site variation and C–N bond cleavage activity was further investigated by calculating the turnover frequency values for each site. This analysis indicates that the variation of different sites on the catalyst is the intrinsic factor of the size dependence of C–N bond cleavage activity, and the step atoms are the active sites for the C–N bond cleavage. When Ru nanoparticles are smaller than 1.9 nm, they have a strong adsorption effect on the reactants, which will affect the catalytic performance of the Ru catalyst. Furthermore, these findings were also confirmed on other metallic Pd/Pt catalysts. The role of step sites in C–N bond cleavage was proposed using the density function theory calculations. The reactants have stronger adsorption energies on the step atoms, and step atoms have d-band center nearer to the Fermi level. In this case, the interaction with the reactant is stronger, which is beneficial for activating the C–N bond of the reactant.

关键词: sp3/sp2-hybridized C–N bond     noble metal nanoparticle     catalytic active site     turnover frequency     DFT    

标题 作者 时间 类型 操作

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文

Effect of noble metal nanoparticle size on C–N bond cleavage performance in hydrodenitrogenation: a study

期刊论文